|
★声明:本文仅代表个人观点,笔者学识有限,资料整理过程中难免存在疏漏谬误,请不吝指正。 SHELXT解析失败SHELXS救场案例2 案例来源:CCDC[1]2100000. Inorg. Chem. 2021, 60, 18843–18853. DOI[2]: 10.1021/acs.inorgchem.1c02589. 案例结构如图1所示(由ChemBioDraw[3]绘制)。 ▲图1 案例结构 该数据用Olex2[4]打开如图2所示。 ▲图2 数据情况 在Olex2中运行SHELXT[5]进行初始结构模型解析,共耗时11.548秒,给出结果如图3所示,给出了5个不同空间群的解析结果,但没有一个结果给出合理结构模型,并且还把晶胞参数矩阵改掉了,由原来的“a = 19.3011(10), b = 12.7454(8), c =24.3661(15)”变成“c = 24.3661(15), b = 12.7454(8), a= 19.3011(10)”,即a轴和c轴互换。 ▲图3 SHELXT解析结构 此时再重新打开原来的ins文件,则变成如图4所示结果,分辨率由原来的0.77 Å变为0.62Å,完整度由原来的99.8%变为93.6%。 ▲图4 矩阵变换后的文件结果 对于这种情况,就笔者有限的知识而言,如果没有备份hkl和ins文件,则需要用吸收校正产生的hkl文件及相应的p4p文件(对于布鲁克单晶仪测试的数据)重新生成hkl和ins文件;如果连数据还原得到的hkl和p4p文件都没有,那就需要重新还原数据;如果连衍射照片文件都没有,那就需要重测(当然,限于笔者知识有限,这个认知可能并不正确)。 既然SHELXT无法给出合理结构模型,则尝试使用SHELXS[6]程序以直接法[7](DirectMethods)进行解析,仅耗时0.5秒,得到了金属的坐标,如图5所示,但其他残余峰无法辨别结构片段。 ▲图5 SHELXS-直接法解析结果 在此基础上用SHELXL[8]精修后,残余峰可以看出吲哚环片段,如图6所示。 ▲图6 SHELXS-直接法解析结果精修后的状态 将明显成环的残余峰定为碳原子,精修后,结果如图7所示,结构片段形变严重,并且金属原子也严重拉长变形。 ▲图7 直接法解析结果指认部分原子后的状态 由此看来,直接法解析结果也无法得到合理的结构模型,于是用SHELXS以重原子法[9](Patterson Method)进行结构解析,仅耗时0.1秒,给出了金属原子以及两个氧原子的坐标,如图8所示。 ▲图8 SHELXS-重原子法解析结果 用SHELXL进行精修,结果如图9所示,结构片段特征更加明显,并且金属原子没有明显变形,十分正常。 ▲图9 SHELXS-重原子法解析结果精修后的状态 在此基础上进行结构的指认,将全部非氢原子指认完成得到完整结构模型后,结果如图10所示。 ▲图10 在直接法解析结果基础上搭建得到完整结构模型 最终精修结果如图11所示。 ▲图11 最终精修结果 类似案例: 视频操作: 单晶结构解析练习591(文献案例-重原子法解析-无序处理):https://www.bilibili.com/video/BV1UQEUz2EWQ 晶体数据: 提取码: vdwt 参考文献 [1] (a) Allen, F. H.The Cambridge Structural Database: A Quarter of a Million Crystal Structuresand Rising. Acta Cryst. 2002, B58, 380–388. DOI:10.1107/S0108768102003890. (b) Groom, C. R.; Bruno, I. J.; Lightfoot, M.P.; Ward, S. C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. DOI:10.1107/S2052520616003954. (c) Mitchell, J.; Robertson, J. H.; Raithby,P. R. Cambridge Crystallographic Data Centre (CCDC). Comprehensive Coordination Chemistry III 2021, 413–437. DOI:10.1016/B978-0-12-409547-2.14829-2. [2] (a) InternationalOrganization for Standardization (2012). ISO 26324:2012. Information and Documentation – Digital Object Identifier System. http://www.iso.org/iso/catalogue_detail.htm?csnumber=43506. (b) McDonald J. D.;Levine-Clark, M. Encyclopedia of Libraryand Information Sciences. Fourth Edition, CRC Press, 2017. DOI: 10.1081/e-elis4. (c) Liu, J. Digital ObjectIdentifier (DOI) and DOI Services: An Overview. Libri 2021, 71, 349‒360. DOI:10.1515/libri-2020-0018. (d) International Organization for Standardization(2022). ISO 26324:2022. Information andDocumentation – Digital Object Identifier System. https://www.iso.org/standard/81599.html[3] (a) Klein, F. M.CS ChemDraw Pro,1 Version 3.1 for Windows. J. Chem. Inf. Comput. Sci. 1995, 35, 166–167. DOI: 10.1021/ci00023a026. (b)Cousins, K. R. ChemDraw 6.0 Ultra CambridgeSoft Corporation, 100 Cambridge ParkDrive, Cambridge, MA 02140. http://www.camsoft.com. Commercial Price: $1395.Academic Price: $699. J. Am. Chem. Soc. 2000, 122, 10257–10258. DOI: 10.1021/ja0047572.(c) Buntrock, R. E. ChemOffice Ultra 7.0. J. Chem. Inf. Comput. Sci. 2002, 42, 1505–1506. DOI: 10.1021/ci025575p. (d) Li, Z.; Wan, H.; Shi, Y.;Ouyang, P. Personal Experience with Four Kinds of Chemical Structure DrawingSoftware: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J. Chem. Inf. Comput. Sci. 2004, 44, 1886–1890. DOI: 10.1021/ci049794h.(e) Mendelsohn, L. D. ChemDraw8 Ultra, Windows and Macintosh Versions. J. Chem. Inf. Comput. Sci. 2004, 44, 2225–2226. DOI: 10.1021/ci040123t. (f) Cousins, K. R. ChemDrawUltra 9.0. CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. See Web site for pricing options. J. Am. Chem. Soc. 2005, 127, 4115–4116. DOI:10.1021/ja0410237. (g) Zielesny, A. Chemistry Software PackageChemOffice Ultra 2005. J. Chem. Inf.Model. 2005, 45, 1474–1477. DOI:10.1021/ci050273j. (h) Mills, N. ChemDraw Ultra 10.0 CambridgeSoft, 100CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. CommercialPrice: $1910 for download, $2150 for CD-ROM; Academic Price: $710 fordownload, $800 for CD-ROM. J. Am. Chem. Soc. 2006, 128, 13649–13650. DOI: 10.1021/ja0697875. (i) Kerwin, S. M.ChemBioOffice Ultra 2010 Suite. J. Am. Chem. Soc. 2010, 132, 2466–2467. DOI: 10.1021/ja1005306. (j) Milne, G. W. A. SoftwareReview of ChemBioDraw 12.0. J. Chem. Inf.Model. 2010, 50, 2053. DOI:10.1021/ci100385n. (k) Narayanaswamy, V. K.; Rissdörfer, M.; Odhav, B.Review on CambridgeSoft ChemBioDraw Ultra 13.0v. Int. J. Theor. Appl. Sci. 2013, 5, 43–49. [4] Dolomanov, O. V.;Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution,Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726. [5] Sheldrick, G. M. SHELXT – Integrated Space-Group andCrystal Structure Determination. ActaCryst. 2015, A71, 3–8. DOI:10.1107/S2053273314026370. [6] (a) Sheldrick, G.M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen,Germany, 1997. (b) Sheldrick, G. M. Phase Annealing in SHELX-90: Direct Methodsfor Larger Structures. Acta Cryst. 1990, A46, 467‒473. DOI:10.1107/S0108767390000277. [7] (a) Sheldrick, G.M. Phase Annealing in SHELX-90:Direct Methods for Larger Structures. ActaCryst. 1990, A46, 467–473. DOI: 10.1107/S0108767390000277. (b) Sheldrick, G. M.;Usón, I. Advances in direct methods for protein crystallography. Curr. Opin. Struct. Biol. 1999, 9, 643–648. DOI: 10.1016/S0959-440X(99)00020-2. (c) Sheldrick, G.M., Hauptman, H. A., Weeks, C. M., Miller, R. & Usón, I. International Tables for Crystallography,Vol. F, edited by E. Arnold and M. Rossmann, pp. 333 345. Dordrecht: Kluwer AcademicPublishers, 2001. (d) Giacovzaao, C. Phasingin Crystallography. Oxford: IUCr/Oxford University Press, 2014. [8] (a) Sheldrick, G. M. SHELXL-2019/3, Program for Crystal Structure Refinement, University of Göttingen,Germany, 2019. (b)Sheldrick, G. M. A Short History of SHELX.Acta Cryst. 2008, A64, 112–122. DOI:10.1107/S0108767307043930. (c) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. DOI: 10.1107/S2053229614024218.(d) Lübben, J.; Wandtke, C. M.;Hübschle, C. B.; Ruf, M.; Sheldrick, G. M.; Dittrich, B. Aspherical ScatteringFactors for SHELXL – Model,Implementation and Application. ActaCryst. 2019, A75, 50–62. DOI:10.1107/S2053273318013840. [9] Patterson, A. L. AFourier Series Method for the Determination of the Components of InteratomicDistances in Crystals. Phys. Rev. 1934, 46, 372–376. DOI: 10.1103/PhysRev.46.372.
|