返回列表 发布新帖
查看: 20|回复: 0

[单晶结构] 晶体结构中单配位金属化合物

1383

帖子

1727

积分

125

金币

版主

积分
1727
发表于 昨天 08:11 | 查看全部 |阅读模式
声明:本文仅代表个人观点,笔者学识有限,资料整理过程中难免存在疏漏谬误,请不吝指正。
晶体结构中单配位金属化合物
案例1CCDC [1]: 1221462–1221463,来自文献“Haubrich, S. T.; Power, P. P. Monomeric InC6H3-2,6-Trip2(Trip = -C6H2-2,4,6-i-Pr3) and ItsManganese Complex (η5-C5H5)(CO)2MnInC6H3-2,6-Trip2: One-Coordinate Indium in the Solid State. J. Am. Chem. Soc. 1998,120, 2202–2203. DOI [2]: 10.1021/ja973479c.”,利用氯化亚铟 [3]InCl, Indium(I) chloride, CAS: 13465-10-6; 1592322-1592325 [3a], 1596966 [3b], 1601508 [3c], 1619046 [3d], 1735799 [3e])和(Et2O)LiC6H3-2,6-Trip2[4]CCDC:1316323)在四氢呋喃(THF, tetrahydrofuran,CAS: 109-99-9)中反应,分离得到单配位铟化合物InC6H3-2,6-Trip2,如1所示(反应式由ChemBioDraw [5]绘制,晶体结构图由Olex2 [6]绘制)
1 单配位铟化合物InC6H3-2,6-Trip2合成及其结构
如需论文PDF和晶体数据CIF [7]文件,请从以下链接下载:
提取码: dm8u
案例2CCDC: 100750,来自文献“Niemeyer, M.; Power, P. P. Synthesis andSolid-State Structure of 2,6-Trip2C6H3Tl (Trip= 2,4,6-iPr3C6H2): AMonomeric Arylthallium(I) Compound with a Singly Coordinated Thallium Atom. Angew.Chem. Int. Ed. 1998, 37, 1277–1279. DOI: 10.1002/(SICI)1521-3773(19980518)37:9<1277::AID-ANIE1277>3.0.CO;2-1.”,利用氯化铊 [8]TlCl, Thallium chloride,CAS: 7791-12-0; CCDC: 1592744 [8a], 1593319 [8b], 1604120 [8c], 1614259 [8d], 1618488 [8e], 1625028 [8f], 1625034 [8g], 1666768 [8h], 2396208 [8i], 2435686 [8j], 1691178 [8k], 1925004 [8l], 2149387 [9o])和(Et2O)LiC6H3-2,6-Trip2在乙醚(DEE, diethyl ether, CAS: 60-29-7)中反应,脱去氯化锂 [9]LiCl, Lithium chloride, CAS: 7447-41-8; CCDC:1602281 [9a], 1603135 [9b], 1613689 [9c], 1617009 [9d], 1618455 [9e], 1769616 [9f], 1931236 [9g], 1931256 [9h], 1931272 [9i], 1933342 [9j], 1933782 [9k], 2139843 [9l], 2140735 [9m], 2148715 [9n], 2149270 [9o], 2230174 [9p], 2231177 [9q], 2275482 [9r], 2399735 [9s], 2439699–2439766 [9t], 2438778–2439802 [9t], 2461276–2461284 [9u], 2462366 [9v], 2462478 [9w], 2338831 [9x])得到单配位铊化合物TlC6H3-2,6-Trip2,如2所示。
2 单配位铊化合物TlC6H3-2,6-Trip2合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: uvsk
案例3CCDC: 262530–262531,来自文献“Dias, H. V. R.; Singh, S.; Cundari, T. R. MonomericThallium(I) Complexes of Fluorinated Triazapentadienyl Ligands. Angew. Chem.Int. Ed. 2005, 44, 4907–4910. DOI:10.1002/anie.200500401.”,利用乙醇铊(I)TlOEt, Thallium(I)ethoxide, CAS: 20398-06-5)与HN[C(C3F7)N(Mes)]2 [10]CCDC: 294154–294155; Mes =mesityl/2,4,6-trimethylphenyl/2,4,6-Me3C6H2)或HN[C(C3F7)N(dipp)]2 [11]CCDC: 252863; dipp = 2,6-Diisopropylphenyl/2,6-iPr2C6H3)反应,脱去乙醇(EtOH, ethanol, CAS: 64-17-5),分别得到单配位铊化合物TlN[C(C3F7)N(Mes)]2CCDC 262530)和TlN[C(C3F7)N(dipp)]2CCDC 262531),如3所示。
3 单配位铊化合物TlN[C(C3F7)N(Mes)]2TlN[C(C3F7)N(dipp)]2合成及其结构
案例4CCDC: 274254,来自文献“Wright, R. J.; Brynda, M.; Power, P. P. AMonomeric Thallium(I) Amide in the Solid State:  Synthesis and Structure ofTlN(Me)ArMes2 (ArMes2 = C6H3-2,6-Mes2).Inorg. Chem. 2005, 44, 3368–3370. DOI: 10.1021/ic0500255.”,利用氯化铊和[LiN(Me)ArMes2]2 [12]CCDC:285860; ArMes2 = C6H3-2,6-(C6H2-2,4,6-Me3)2)在乙醚中反应,分离得到单配位铊化合物TlN(Me)ArMes2,如4所示。
4 单配位铊化合物TlN(Me)ArMes2合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: qwdw
案例5CCDC: 628224,来自文献“Quasi-Isomeric Gallium Amides and Imides GaNR2and RGaNR (R = Organic Group): Reactions of the Digallene, Ar'GaGaAr'(Ar' = C6H3-2,6-(C6H3-2,6-Pri2)2)with Unsaturated Nitrogen Compounds. J. Am. Chem. Soc. 2006, 128,12498–12509. DOI: 10.1021/ja063072k.”,利用"GaI" [13]LiN(SiMe3)ArMes2 [12]在甲苯(Toluene,CAS: 108-88-3)中反应,分离得到单配位镓化合物GaN(SiMe3)ArMes2,如5所示。
5 单配位镓化合物GaN(SiMe3)ArMes2合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: rin9
案例6CCDC: 725728–725729,来自文献“Zhu, Z.; Fischer, R. C.; Ellis, B. D.;Rivard, E.; Merrill, W. A.; Olmstead, M. M.; Power, P. P.; Guo, J. D.; Nagase,S.; Pu, L. Synthesis, Characterization and Real Molecule DFT Calculations forNeutral Organogallium(I) Aryl Dimers and Monomers: Weakness of Gallium–GalliumBonds in Digallenes and Digallynes. Chem. Eur. J. 2009, 15,5263–5272. DOI: 10.1002/chem.200900201.”,利用"GaI" [13](Et2O)LiAr*-3,5-iPr2Ar*-3,5-iPr2 = C6H-2,6-(C6H2-2,4,6-iPr3)2-3,5-iPr2)或(Et2O)LiAr'-3,5-iPr2Ar'-3,5-iPr2= C6H-2,6-(C6H2-2,6-iPr2)2-3,5-iPr2)在甲苯中反应,分别得到单配位镓化合物GaAr*-3,5-iPr2CCDC: 725728 for GaAr*-3,5-iPr2·2.9C6H6)和GaAr'-3,5-iPr2CCDC: 725729),如6所示。
6 单配位镓化合物GaAr*-3,5-iPr2GaAr'-3,5-iPr2合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: 7u48
案例7CCDC: 2026034,来自文献“Queen, J. D.; Lehmann, A.; Fettinger, J. C.;Tuononen, H. M.; Power, P. P. The Monomeric Alanediyl :AlAriPr8(AriPr8 = C6H‑2,6-(C6H2‑2,4,6-Pri3)2‑3,5-Pri2):An Organoaluminum(I) Compound with a One-Coordinate Aluminum Atom. J. Am.Chem. Soc. 2020, 142, 20554–20559. DOI: 10.1021/jacs.0c10222.”,利用[LiAlH3AriPr8][14]与碘甲烷(CH3I, Iodomethane, CAS: 74-88-4)在乙醚中反应脱去碘化锂(LiI, LithiumIodide, CAS: 10377-51-2; CCDC: 1603137 [9b], 1613691 [9c], 1614123 [15a], 1618457 [9e], 1728962 [15b], 1728964 [15b], 1769618 [9f], 1932450 [15c], 1933344 [9j], 2139845 [9l], 2140737 [9m], 2149272 [9o], 2275484 [9r], 2461293–2461297 [9u], 2461299–2461300 [9u])生成的AlI2AriPr8CCDC: 2026033)和5% w/w Na/NaCl在己烷(hexane, CAS: 110-54-3)中反应(三价铝还原为一价铝),脱去碘化钠(NaI, Sodiumiodide,CAS: 7681-82-5; 1613695 [9c], 1617013 [9d], 1618460 [9e], 1625013–1625015 [16a], 1769622 [9f], 1933347 [9j], 1934317 [16b], 1934333 [16b], 1934349 [16b], 2140741 [9m], 2149304 [9o], 2200590 [16c], 2462742 [16d], 2338832 [16e])生成单配位铝化合物AlAriPr8CCDC: 2026034 for AlAriPr8·3C6H6),如7所示。
7 单配位铝化合物AlAriPr8合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: kqmc
案例8CCDC: 903988–903991,来自文献“Dange, D.; Li, J.; Schenk, C.; Schnöchel, H.;Jones, C. Monomeric Group 13 Metal(I) Amides: Enforcing One-Coordination ThroughExtreme Ligand Steric Bulk. Inorg. Chem. 2012, 51, 13050–13059.DOI: 10.1021/ic3022613.”,利用HN(dbmp)SiR3 [17]dbmp = 2,6-dibenzhydryl-4-methylphenyl, R =Me(CCDC: 822598), Ph(CCDC: 822603))与正丁基锂 [18]nBuLi, n-Butyllithium, CAS: 109-72-8, CCDC: 1263904)反应得到的LiN(dbmp)SiR3 [17]R = Me(CCDC: 822594 for (Et2O)LiN(dbmp)SiMe3 and CCDC: 822595 for (THF)LiN(dbmp)SiMe3), Ph)和[{GaICl(THF)}n] [19]或溴化铊(TlBr, Thallium bromide, CAS: 7789-40-4; CCDC: 1614260 [8d], 1618489 [20a], 1625029 [8f], 1625042 [8g], 1666769 [20b], 2396209 [8i], 1691179 [8k], 1933368 [9j], 2276612 [20c])反应,分别得到单配位镓化合物GaN(dbmp)SiR3R = Me(CCDC: 903988), Ph(CCDC: 903989))和单配位铊化合物TlN(dbmp)SiR3R = Me(CCDC: 903991), Ph),其中GaN(dbmp)SiMe3亦可通过碘单质(I2, Iodine, CAS: 7553-56-2)与过量金属镓(Ga, Gallium, CAS: 7440-55-3)反应得到的"GaI"LiN(dbmp)SiMe3反应制备;利用HN(dbmp)SiMe3与六甲基二硅胺钾 [21]KHMDS/[KN(SiMe3)2], Potassiumhexamethyldisilazide, CAS: 40949-94-8, CCDC: 1282575 [21a], 2340244 [21b])在四氢呋喃中反应,后用甲苯萃取得到的(η6-tol)KN(dbmp)SiMe3和溴化亚铟(InBr, Indium(I) bromide, CAS: 14280-53-6; CCDC: 1599277[22], 1619505–1619510 [20b])在四甲基乙二胺(tmeda, N,N,N',N'-Tetramethylethylenediamine,CAS: 110-18-9)和甲苯混合溶剂中反应,分离得到单配位铟化合物InN(dbmp)SiMe3CCDC: 903990),如8所示。
8 单配位镓、铟和铊化合物MN(dbmp)SiR3M = Ga, In, Tl; R = Me, Ph)合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: ymqf
案例9CCDC: 2105194, 2108299,分别来自文献“Zhang, X.; Liu, L. L. A Free Aluminylene withDiverse σ-Donating and Doubly σ/π-Accepting Ligand Features for TransitionMetals. Angew. Chem. Int. Ed. 2021, 60, 27062–27069. DOI: 10.1002/anie.202111975. Angew. Chem. Int. Ed. 2022, 61,e202207892. DOI: 10.1002/anie.202207892.”和“Hinz, A.; Müller, M. P. Attempted Reduction of aCarbazolyl-Diiodoalane. Chem. Commun. 2021, 57,12532–12535. DOI: 10.1039/d1cc05557g.”,前者利用AlI2ArtBu6CCDC: 2105193; ArtBu6= 3,6-di-tert-butyl-1,8-bis(3,5-di-tert-butylphenyl)-9H-carbazol-9-yl)与K/KI (5%)在甲苯中反应(三价铝还原为一价铝),脱去碘化钾(KI, Potassium Iodide, CAS: 7681-11-0; CCDC:1598939 [23a], 1613698 [9c], 1617017 [9d], 1618464 [23b], 1618479 [23c], 1625064 [23d], 1625160 [23e], 2435685 [8j], 1933351 [9j], 1934313 [16b], 1934329 [16b], 1934345 [16b], 2139841 [9l], 2149255 [9o], 2200584 [16c], 2338830 [23f]),分离得到单配位铝化合物AlArtBu6CCDC: 2105194),后者利用AlI2ArtBu6CCDC: 2108296, 2108297 for AlI2ArtBu6·C6H6)和八碳化钾(KC8,参阅推文“文献|KC8”)反应,脱去碘化钾,分离得到单配位铝化合物AlArtBu62108299),如9所示。
9 单配位铝化合物AlArtBu6合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: 26hk
案例10CCDC: 2225002,来自文献“Pang, Y.; Nöthling, N.; Leutzsch, M.; Kang,L.; Bill, E.; van Gastel M.; Reijerse, E.; Goddard, R.; Wagner, L.; Santalucia,D.; Debeer, S.; Neese, F.; Cornella, J. Synthesis And Isolation of A TripletBismuthinidene With A Quenched Magnetic Response. Science 2023, 380,1043–1048. DOI: 10.1126/science.adg2833.”,利用MsFluind-BiCl2CCDC:2225003 for MsFluind-BiCl2·THF; MsFluind = dispiro[fluorene-9,3'-(1',1',7',7'-tetramethyl-s-hydrindacen-4'-yl)-5',9"-fluorene];THF = tetrahydrofuran, CAS: 109-99-9)与二茂钴(Cp2Co, Cobaltocene, CAS: 1277-43-6)反应,得到的是含Bi=Bi双键的[MsFluind-Bi(I)]2CCDC: 2225005),而利用位阻更大的tBu-MsFluind-BiBr2CCDC: 2225004 for MsFluind-BiBr2·THF; tBu-MsFluind= 2,2'',7,7''-tetra-tert-butyl-3',3',5',5'-tetramethyl-2',3',5',6'-tetrahydrodispiro[fluorene-9,1'-s-indacene-7',9''-fluoren]-8'-yl)与二茂钴反应,成功分离得到单配位铋化合物tBu-MsFluind-Bi(I)CCDC: 2225002),如10所示。
10 单配位铋化合物tBu-MsFluind-Bi(I)合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: srdb
案例11CCDC: 2125009,来自文献“Wang, D.; Zhai, C.; Chen, Y.; He, Y.; Chen,X.-D.; Wang, S.; Zhao, L.; Frenking, G.; Wang, X.; Tan, G. An IsolableGermylyne Radical With A One-Coordinate Germanium Atom. Nat. Chem. 2023,15, 200–205. DOI: 10.1038/s41557-022-01081-1.”,利用MsFluid*-Li(THF)2与锗(II)氯化二噁烷络合物(GeCl2(dioxane), Germanium(II) chloride dioxane complex, CAS: 28595-67-7)在四氢呋喃中反应脱去氯化锂得到的MsFluid*-GeClCCDC: 2125008 for MsFluid*-GeCl·C6H14)和八碳化钾反应(二价锗被还原为一价锗),脱去氯化钾(KCl, Potassium chloride, CAS: 7447-40-7; CCDC:1597582 [24a], 1598937 [23a], 1774219 [24b],1603972–1603980 [24b], 1605380 [24c], 1613696 [9c], 1617015 [9d], 1618462 [23b], 1618477 [24d], 1624034 [24e], 1625066 [23d], 2435683 [8j], 1670877 [24f], 1679102 [24g], 1681608 [24h], 1696330–1696336 [24i], 1711168–1711194 [24j], 1722653–1722688 [24k], 1769572–1769575 [24l], 1931269 [9i], 1932448 [15c], 1933349 [9j], 1934311 [16b], 1934327 [16b], 1934343 [16b], 2139839 [9l], 2149253 [9o], 2200582 [16c], 2200653 [24m], 2275893 [24n], 2399916 [24o], 2400292 [24p], 2338829 [24q])得到单配位锗化合物MsFluid*-Ge,如11所示。
11 单配位锗化合物MsFluind*-Ge合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: h39j
案例12CCDC: 2227158–2227159,来自文献“Wu, M.; Chen, W.; Wang, D.; Chen, Y.; Ye, S.;Tan, G. Triplet Bismuthinidenes Featuring Unprecedented Giant and Positive ZeroField Splittings. Natl. Sci. Rev. 2023, 10, nwad169. DOI: 10.1093/nsr/nwad169.”,利用MsFluidtBu-Li(THF)2MsFluid*-Li(THF)2和三氯化铋(BiCl3, Bismuth(III) chloride, CAS: 7787-60-2; CCDC: 1592665 [25a], 1610974 [25b])反应脱去氯化锂得到的MsFluidtBu-BiCl2MsFluid*-BiCl2和在八碳化钾作用下脱去氯化钾得到单配位铋化合物MsFluidtBu-BiMsFluid*-Bi,如12所示。
12 单配位铋化合物MsFluidtBu-BiMsFluid*-Bi合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: m62v
案例13CCDC: 2203582–2203583, 2260728,来自文献“Wu, M.; Li, H.; Chen, W.; Wang, D.; He, Y.;Xu, L.; Ye, S.; Tan, G. A Triplet Stibinidene. Chem 2023, 9,2573–2584. DOI: 10.1016/j.chempr.2023.05.005.”,利用MsFluidtBu-SbCl2CCDC: 2203580)与八碳化钾反应脱去氯化钾得到的是含Sb=Sb双键的MsFluidtBu-Sb=Sb-MsFluidtBuCCDC: 2203581),当使用位阻更大的配体,即MsFluid*-SbBr2作为反应原料时,成功得到单配位锑化合物MsFluid*-SbCCDC: 2203582 for MsFluid*-Sb·C6H14at 120 K, 2203583 for MsFluid*-Sb·C6H14 at 150 K, 2260728for MsFluid*-Sb·C6H14 at 110 K),如13所示。
13 单配位锑化合物MsFluid*-Sb合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: 3rxm
案例14CCDC: 2224319,来自文献“Wang, D.; Chen, W.; Zhai, C.; Zhao, L.; Ye,S.; Tan, G. Monosubstituted Doublet Sn(I) Radical Featuring Substantial UnquenchedOrbital Angular Momentum. J. Am. Chem. Soc. 2023, 145,6914−6920. DOI: 10.1021/jacs.3c00421.”,利用MsFluid*-SnBrCCDC: 2224318)和八碳化钾在四氢呋喃中反应,脱去溴化钾得到单配位锡化合物MsFluid*-SnCCDC:2224319 for MsFluid*-Sn·C6H14),如14所示。
14 单配位锡化合物MsFluid*-Sn合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: 64j7
案例14CCDC: 2329154,来自文献“Chen, H.; Chen, W.; Wang, D.; Chen, Y.; Liu,Z.; Ye, S.; Tan, G.; Gao, S. An Isolable One-Coordinate Lead(I) Radical withStrong g-Factor Anisotropy. Angew. Chem. Int. Ed. 2024, 63,e202402093. DOI: 10.1002/anie.202402093.”,利用MsFluid*-PbBrCCDC: 2329153for MsFluid*-PbBr·C7H8)和八碳化钾在四氢呋喃中反应,脱去溴化钾得到单配位铅化合物MsFluid*-PbCCDC:2329154 for MsFluid*-Pb·C6H14),如15所示。
15 单配位铅化合物MsFluid*-Pb合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: an7y
案例15CCDC: 2496753,来自文献“García-Romero, Á.; Pink, M.; Fernández, I.;Goicoechea, J. M. A Crystalline Mono-Coordinate Indium(I)-Phosphaalkenyl. Angew.Chem. Int. Ed. 2026, e23125. DOI: 10.1002/anie.202523125.”,利用(InTer)2 [26]CCDC: 191190; Ter = 2,6-Dipp2-C6H3;Dipp = 2,6-diisopropylphenyl)与1-金刚烷基膦杂乙炔(Ad-C≡P; 1-Adamantylphosphaethyne;CAS: 101055-70-3; Ad = Adamantyl)在甲苯中于零下78摄氏度反应,分离得到单配位铟化合物In[C(Ad)=PTer]CCDC:2496753),如16所示。
16 单配位铟化合物In[C(Ad)=PTer]合成及其结构
如需论文PDF和晶体数据CIF文件,请从以下链接下载:
提取码: n1sq
综上所述,截至本文文稿(2026216日),文献已报道的单配位金属化合物包含铝(Al)、镓(Ga)、锗(Ge)、铟(In)、锡(Sn)、锑(Sb)、铊(Tl)、铅(Pb)和铋(Bi)等九种金属。(如有遗漏,欢迎补充。)
参考文献
[1]    (a)Allen, F. H. The Cambridge Structural Database: A Quarter of a Million CrystalStructures and Rising. Acta Cryst. 2002, B58, 380–388. DOI:10.1107/S0108768102003890. (b) Groom, C. R.; Bruno, I. J.; Lightfoot, M.P.; Ward, S. C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. DOI:10.1107/S2052520616003954. (c) Mitchell, J.; Robertson, J. H.; Raithby,P. R. Cambridge Crystallographic Data Centre (CCDC). Comprehensive Coordination Chemistry III 2021, 413–437. DOI: 10.1016/B978-0-12-409547-2.14829-2.
[2]    (a)International Organization for Standardization (2012). ISO 26324:2012. Information and Documentation – DigitalObject Identifier System.http://www.iso.org/iso/catalogue_detail.htm?csnumber=43506. (b) McDonald J. D.;Levine-Clark, M. Encyclopedia of Libraryand Information Sciences. Fourth Edition, CRC Press, 2017. DOI: 10.1081/e-elis4. (c) Liu, J. Digital ObjectIdentifier (DOI) and DOI Services: An Overview. Libri 2021, 71, 349‒360. DOI:10.1515/libri-2020-0018. (d) International Organization forStandardization (2022). ISO 26324:2022. Informationand Documentation – Digital Object Identifier System.https://www.iso.org/standard/81599.html
[3]    (a) van der Vorst, C. P. J. M.; Verschoor, G.C.; Maaskant, W. J. A. The Structures of Yellow and Red Indium Monochloride. ActaCryst. 1978, B34, 3333–3335. DOI: 10.1107/S056774087801081X. (b) van der Vorst, C. P. J. M.; Maaskant, W.J. A. Stereochemically Active (5s)2 Lone Pairs in the Structures ofα-InCl and β-InCl. J. Solid State Chem. 1980, 34, 301–313.DOI: 10.1016/0022-4596(80)90428-4. (c) van der Berg, J. M. The Crystal Structure of theRoom Temperature Modification of Indium Chloride, InCl. Acta Cryst. 1966,20, 905–910. DOI: 10.1107/S0365110X66002032. (d) Maaskant, W. J. A. Induced Helices,Tetrahedrons and Spirals in Yellow InCl. J. Alloy. Compd. 1998, 281, 211–221. DOI: 10.1016/S0925-8388(98)00788-9. (e) Bach, A.;Fischer, D.; Jansen, M. MetastablePhase Formation of Indium Monochloride from an Amorphous Feedstock. Z.Anorg. Allg. Chem. 2013, 639, 465–467. DOI: 10.1002/zaac.201200509.
[4]    Schiemenz,B.; Power, P. P. Synthesis of Sterically Encumbered Terphenyls andCharacterization of Their Metal Derivatives Et2OLiC6H3-2,6-Trip2and Me2SCuC6H3-2,6-Trip2 (Trip =2,4,6-i-Pr3C6H2-). Organometallics1996, 15, 958–964. DOI: 10.1021/om950588w.
[5]    (a)Klein, F. M. CS ChemDraw Pro,1 Version 3.1 for Windows. J. Chem. Inf. Comput.Sci. 1995, 35, 166–167. DOI: 10.1021/ci00023a026. (b)Cousins, K. R. ChemDraw 6.0 Ultra CambridgeSoft Corporation, 100 Cambridge ParkDrive, Cambridge, MA 02140. http://www.camsoft.com. Commercial Price:  $1395.Academic Price:  $699. J. Am. Chem. Soc. 2000, 122, 10257–10258. DOI: 10.1021/ja0047572.(c) Buntrock, R. E. ChemOffice Ultra 7.0. J.Chem. Inf. Comput. Sci. 2002, 42, 1505–1506. DOI: 10.1021/ci025575p. (d) Li, Z.; Wan, H.; Shi, Y.;Ouyang, P. Personal Experience with Four Kinds of Chemical Structure DrawingSoftware: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J. Chem.Inf. Comput. Sci. 2004, 44, 1886–1890. DOI: 10.1021/ci049794h.(e) Mendelsohn, L. D. ChemDraw8 Ultra, Windows and Macintosh Versions. J.Chem. Inf. Comput. Sci. 2004, 44, 2225–2226. DOI: 10.1021/ci040123t. (f) Cousins, K. R. ChemDrawUltra 9.0. CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. See Web site for pricing options. J. Am. Chem. Soc. 2005, 127, 4115–4116. DOI:10.1021/ja0410237. (g) Zielesny, A. Chemistry Software PackageChemOffice Ultra 2005. J. Chem. Inf.Model. 2005, 45, 1474–1477. DOI:10.1021/ci050273j. (h) Mills, N. ChemDraw Ultra 10.0 CambridgeSoft, 100CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. CommercialPrice:  $1910 for download, $2150 for CD-ROM; Academic Price:  $710 fordownload, $800 for CD-ROM. J. Am. Chem.Soc. 2006, 128, 13649–13650. DOI: 10.1021/ja0697875. (i) Kerwin, S. M.ChemBioOffice Ultra 2010 Suite. J. Am. Chem.Soc. 2010, 132, 2466–2467. DOI: 10.1021/ja1005306. (j) Milne, G. W. A. SoftwareReview of ChemBioDraw 12.0. J. Chem. Inf.Model. 2010, 50, 2053. DOI:10.1021/ci100385n. (k) Narayanaswamy, V. K.; Rissdörfer, M.; Odhav, B.Review on CambridgeSoft ChemBioDraw Ultra 13.0v. Int. J. Theor. Appl. Sci. 2013,5, 43–49.
[6]    Dolomanov,O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution,Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.
[7]    (a)Hall, S. R.; Allen, F. H. Brown, I. D. The Crystallographic Information File(CIF): A New Standard Archive File for Crystallography. Acta Cryst. 1991, A47, 655–685. DOI:10.1107/S010876739101067X. (b) Hall, S. R. The STAR File: A New Formatfor Electronic Data Transfer and Archiving. J.Chem. Inf. Comput. Sci. 1991, 31, 326–333. DOI:10.1021/ci00002a020. (c) Hall, S. R.; Spadaccini, N. The STAR File:Detailed Specifications. J. Chem. Inf.Comput. Sci. 1994, 34, 505–508. DOI:10.1021/ci00019a005.
[8]    (a) Thiele, G.; Rink, W. Die Konstitution desvalenzgemischten Thalliumchloridbromids und über Mischkristalle im System TlCl2/TlBr2.Z. Anorg. Allg. Chem. 1975, 414, 47–55. DOI: 10.1002/zaac.19754140106. (b) Roberts, A. C.; Venance, K. E.; Seward, T. M.; GriceJ. D.; Paar, W. H. Lafossaite a new mineral from the La Fossa Crater, Vulcano,Italy. Mineralogical Record 2006, 37, 165–168. (c) Moeller,K. Eine für Präzisionsbestimmungen von Gitterkonstanten nach derDebye-Scherrer-Methode besonders geeignete Eichsubstanz. Naturwissenschaften1933, 21, 223. DOI: 10.1007/bf01505673. (d) Smakula, A.; Kalnajs, J. PrecisionDetermination of Lattice Constants with a Geiger-Counter X-Ray Diffractometer. Phys.Rev. 1955, 99, 1737–1743. DOI: 10.1103/PhysRev.99.1737. (e) Davey, W. P.; Wick, F. G. Phys. Rev.1921, 17, 403. (f) Blackman, M.; Khan, I. H. The Polymorphism ofThallium and Other Halides at Low Temperatures. Proc. Phys. Soc. 1961,77, 471–475. DOI: 10.1088/0370-1328/77/2/331. (g) Popova, M. A.; Darvojd, T. J.; Gurevich,M. A. Thermochemistry of Some Refractory Compounds. Zhurnal NeorganicheskoiKhimii 1966, 11, 1236–1238. (h) Ungelenk, J. Zur Polymorphieder Thalliumhalogenide in Aufdampfschichten. Naturwissenschaften 1962,49, 252–253. DOI: 10.1007/bf00601411. (i) Schulz, L. G. Polymorphism of Cesium andThallium Halides. Acta Cryst. 1951, 4, 487–489. DOI: 10.1107/S0365110X51001641. (j) Hambling, P. G. The Lattice Constants and ExpansionCoefficients of Some Halides. Acta Cryst. 1953, 6, 98. DOI: 10.1107/S0365110X53000284. (k) Singh, R. P.; Singh, R. K.; Rajagopalan, M.Theoretical Investigations on Structural, Elastic and Electronic Properties ofThallium Halides. Phys. B 2011, 406, 1717–1721. DOI: 10.1016/j.physb.2011.02.014. (l) Straumanis, M. E. The Precision Determination of LatticeConstants by the Powder and Rotating Crystal Methods and Applications. J.Appl. Phys. 1949, 20, 726–734. DOI:10.1063/1.1698520.
[9]    (a)Ievinǎ, A.; Straumanis, M.; Karlsons, K. Präzisionsbestimmung VonGitterkonstanten Hygroskopischer Verbindungen (LiCl, NaBr). Z.Phys. Chem. 1938, 40B, 146–150. DOI:10.1515/zpch-1938-4009. (b) Ott, H. Die Raumgitter DerLithiumhalogenide. Physikalische Zeitschrift 1923, 24,209–213. (c) Cortona, P. Direct Determination of Self-Consistent Total Energiesand Charge Densities of Solids: A Study of the Cohesive Properties of theAlkali Halides. Phys. Rev. B 1992, 46, 2008–2014. DOI: 10.1103/PhysRevB.46.2008. (d) Finch, G. I.;Fordham, S. The Effect of Crystal-Size on Lattice-Dimensions. Proc. Phys.Soc. 1936, 48, 85–94. DOI: 10.1088/0959-5309/48/1/312. (e) Posnjak, E.;Wyckoff, R. W. G. The Crystal Structures of the Alkali Halides. II. J.Washington Acad. Sci. 1922, 12, 248–251. (f) Sadigh, B.;Erhart, P.; Åberg, D. Variational Polaron Self-Interaction-CorrectedTotal-Energy Functional for Charge Excitations in Insulators. Phys. Rev. B2015, 92, 075202. DOI: 10.1103/PhysRevB.92.075202.(g) Shimazaki, T.; Nakajima, T. Theoretical Study of a Screened Hartree–FockExchange Potential Using Positiondependent Atomic Dielectric Constants. J.Chem. Phys. 2015, 142, 074109. DOI: 10.1063/1.4908061.(h) Råsander, M.; Moram, M. A. On the Accuracy of Commonly Used DensityFunctional Approximations in Determining the Elastic Constants of Insulatorsand Semiconductors. J. Chem. Phys. 2015, 143, 144104. DOI: 10.1063/1.4932334. (i) Webster, R.; Bernasconi,L.; Harrison, N. M. Optical Properties of Alkali Halide Crystals fromAll-Electron Hybrid TD-DFT Calculations. J. Chem. Phys. 2015, 142,214705. DOI: 10.1063/1.4921822. (j) Kim, C.;Pilania, G.; Ramprasad, R. From Organized High-Throughput Data toPhenomenological Theory Using Machine Learning: The Example of DielectricBreakdown. Chem. Mater. 2016, 28, 1304–1311. DOI: 10.1021/acs.chemmater.5b04109. (k) Tran, F.;Blaha, P. Approximations to the Exact Exchange Potential: KLI versus Semilocal.Phys. Rev. B 2016, 94, 165149. DOI:10.1103/PhysRevB.94.165149. (l) Kim, H.; Trinkle, D. R. MechanicalProperties and Phase Stability of Monoborides Using Density Functional TheoryCalculations. Phys. Rev. Mater. 2017, 1, 013601. DOI: 10.1103/PhysRevMaterials.1.013601. (m) Kong, B.;Liu, G.-F.; Zeng, T.-X. Many-body perturbation GW calculations for theelectronic structures of both hexagonal and cubic REH3 (RE = Sm, Gd,Tb, Dy, Ho, Er, Tm, Lu). Mater. Res. Express 2018, 5,025902. DOI: 10.1088/2053-1591/aaab05. (n) Ma,J.; He, J.; Mazumdar, D.; Munira, K.; Keshavarz, S.; Lovorn, T.; Wolverton, C.;Ghosh, A. W.; Butler, W. H. Computational Investigation of Inverse HeuslerCompounds for Spintronics Applications. Phys. Rev. B 2018, 98,094410. DOI: 10.1103/PhysRevB.98.094410. (o)Zhang, H.; Zhang, B. Fast Crack Kinking Manipulated by Atomic Hoop Stress inMonolayer Hexagonal Boron Nitride Strip. Comput. Mater. Sci. 2018,154, 1–7. DOI: 10.1016/j.commatsci.2018.07.029.(p) Tran, F.; Kalantari, L.; Traoré, B.; Rocquefelte, X.; Blaha, P. NonlocalVan Der Waals Functionals for Solids: Choosing an Appropriate One. Phys.Rev. Mater. 2019, 3, 063602. DOI: 10.1103/PhysRevMaterials.3.063602.(q) Patra, B.; Jana, S.; Constantin, L. A.; Samal, P. Efficient Band GapPrediction of Semiconductors and Insulators from a SemilocalExchange-Correlation Functional. Phys. Rev. B 2019, 100,045147. DOI: 10.1103/PhysRevB.100.045147. (r)Wang, J.; Deng, M.; Chen, Y.; Liu, X.; Ke, W.; Li, D.; Dai, W.; He, K.Structural, Elastic, Electronic and Optical Properties of Lithium Halides (LiF,LiCl, LiBr, and LiI): First-Principle Calculations. Mater. Chem. Phys. 2020,244, 122733. DOI: 10.1016/j.matchemphys.2020.122733.(s) Mejía-Rodríguez, D.; Trickey, S. B. Meta-Gga Performance in Solids atAlmost Gga Cost. Phys. Rev. B 2020, 102, 121109(R). DOI: 10.1103/PhysRevB.102.121109. (t) Rostami, S.;Ghasemi, A.; Goedecker, S. Novel Polymorphs and Polytypes of Lithium Chloridefrom Structure Predictions Based on Charge Equilibration Via Neural NetworkTechnique. Phys. Rev. Mater. 2021, 5, 123603. DOI: 10.1103/PhysRevMaterials.5.123603. (u) Scheiber,H. O.; Patey, G. N. Analysis of the Relative Stability of Lithium HalideCrystal Structures: Density Functional Theory and Classical Models. J. Chem.Phys. 2021, 154, 184507. DOI: 10.1063/5.0051453.(v) Kutepov, A. L. Full versus Quasiparticle Self-Consistency inVertex-Corrected GW Approaches. Phys. Rev. B 2022, 105,045124. DOI: 10.1103/PhysRevB.105.045124. (w)Kou, Z.; Chen, F.; Jiang, Z.; Guo, W.; Liu, X. Interedge Van Der WaalsInteraction between Two-Dimensional Materials. Phys. Rev. B 2023,108, 115420. DOI: 10.1103/PhysRevB.108.115420.(x) Hong, D. CSD 2338831: Experimental Crystal Structure Determination. ICSDCommun. 2024, DOI:10.25505/fiz.icsd.cc2jhr5z.
[10]  Dias,H. V. R.; Singh, S. Monomeric Lithium Triazapentadienyl Complexes. DaltonTrans. 2006, 1995–2000. DOI: 10.1039/b518464a.
[11]  Dias,H. V. R.; Singh, S. Copper(I)Complexes of Fluorinated Triazapentadienyl Ligands:  Synthesis andCharacterization of [N{(C3F7)C(Dipp)N}2]CuL(Where L = NCCH3, CNBut, CO; Dipp =2,6-Diisopropylphenyl). Inorg. Chem. 2004, 43, 5786–5788. DOI: 10.1021/ic049229w.
[12]  Wright, R. J.; Steiner, J.; Beaini, S.;Power, P. P. Synthesis of the Sterically Encumbering Terphenyl Silyl and AlkylAmines HN(R)ArMes2 (R = Me and SiMe3), Their LithiumDerivatives LiN(R)ArMes2, and the Tertiary Amine Me2NArMes2.Inorg. Chim. Acta 2006, 359, 1939–1946. DOI: 10.1016/j.ica.2005.10.015.
[13]  (a) Green, M. L. H.; Mountford, P.; Smout, G.J.; Speel, S. R. New Synthetic Pathways into the Organometallic Chemistry ofGallium. Polyhedron 1990, 9, 2763–2765. DOI: 10.1016/S0277-5387(00)86809-6. (b) Baker, R. J.; Jones, C. “GaI”: A Versatile Reagent for the SyntheticChemist. Dalton Trans. 2005, 1341–1348. DOI: 10.1039/b501310k.
[14]  Melton,C. E.; Dube, J. W.; Ragogna, P. J.; Fettinger, J. C.; Power, P. P. Synthesisand Characterization of Primary Aluminum Parent Amides and Phosphides. Organometallics2014, 33, 329–337. DOI: 10.1021/om4010675.
[15]  (a) Ruehl,W. Z. Phys. 1956, 143, 591–604.DOI: 10.1007/bf01333568. (b) Fischer, D.; Mueller, A.; Jansen, M. Z.Anorg. Allg. Chem. 2004, 630, 2697–2700. DOI: 10.1002/zaac.200400352. (c) Wang, X.; Zhang, Y.-T..;Liu, P.-C.; Yan, J.; Mo, W.; Zhang, P.-C..; Chen, X.-Q.Ductile-To-BrittleTransition and Materials' Resistance to Amorphization by Irradiation Damage. RSCAdv. 2016, 6, 44561–44568. DOI: 10.1039/c6ra05194d.
[16]  (a) Swanson,H. E.; Gilfrich, N. T.; Ugrinic, G. M. Standard X-Ray Diffraction PowderPatterns. National Bureau of Standards U.S., Circular 1955, 539,1–75. (b) Solovyeva, A.; von Lilienfeld, O. A. Alchemical Screening of IonicCrystals. Phys. Chem. Chem. Phys. 2016, 18, 31078–31091. DOI: 10.1039/c6cp04258a. (c) Ertural, C.; Steinberg,S.; Dronskowski, R. Development of a Robust Tool to Extract Mulliken and LöwdinCharges from Plane Waves and Its Application to Solid-State Materials. RSCAdvances 2019, 9, 29821–29830. DOI: 10.1039/c9ra05190b.(d) Kesek, M.; Kurt, K.First-Principles Calculations to Investigate Structural, Electronic and PhononProperties of Sodium Bromide (NaBr) and Sodium Iodide (NaI) Crystals. Comput.Condens. Matte. 2022, 31, e00682. DOI: 10.1016/j.cocom.2022.e00682. (e) Hong, D. CCDC 2338832:Experimental Crystal Structure Determination. CSD Commun. 2024, DOI: 10.25505/fiz.icsd.cc2jhr60.
[17]  Li, J.; Stasch, A.; Schenk, C.; Jones, C. ExtremelyBulky Amido-Group 14 Element Chloride Complexes: Potential Synthons for LowOxidation State Main Group Chemistry. Dalton Trans. 2011, 40,10448–10456. DOI: 10.1039/c1dt10678c.
[18]  Kottke, T.; Stalke, D. Structures of Classical Reagents inChemical Synthesis: (nBuLi)6, (tBuLi)4, andthe Metastable (tBuLi·Et2O)2. Angew. Chem. Int. Ed. 1993, 32, 580–582. DOI:10.1002/anie.199305801.
[19]  Schnöckel, H.; Schnepf, A. Aluminium and GalliumClusters: Metalloid Clusters and their Relationship to the Bulk Phases, toNaked Clusters and to Nanoscaled Materials. In The Group 13 Metals:Aluminium, Gallium, Indium and Thallium. Chemical Patterns and Peculiarities,Aldrich , S., Downs, A. J., Eds.; Wiley-Blackwell: Chichester, U.K., 2011; pp402–487.
[20]  (a) van Arkel, A. E. Physica(Amsterdam) 1924, 4, 33. (b) Becker, D.; Beck, H. P. AbInitio Investigations of TlI-Type Compounds under High Pressure. Z.Kristallogr. 2004, 219, 348–358. DOI: 10.1524/zkri.219.6.348.34636. (c) Pandey, T.; Lindsay, L.; Sales,B. C.; Parker, D. S. Lattice instabilities and phonon thermal transport in TlBr.Phys. Rev. Materials 2020, 4, 045403. DOI: 10.1103/PhysRevMaterials.4.045403.
[21]  (a)Tesh, K. F.; Hanusa, T. P.; Huffman, J. C. Ion Pairing in[Bis(trimethylsilyl)amido]potassium: The X-ray Crystal Structure of Unsolvated[KN(SiMe3)2]2. Inorg. Chem. 1990,29, 1584–1586. DOI: 10.1021/ic00333a029. (b)Hong, D. CCDC 2340244: Experimental Crystal Structure Determination. CSDCommun. 2024, DOI:10.5517/ccdc.csd.cc2jk6r2.
[22]  Stephenson, N. C.; Mellor, D. P. AustralianJournal of Scientific Research, Series A: Physical Sciences 1950, 3,581.
[23]  (a) Ahtee,M. Annales Academiae Scientiarum Fennicae, Series A6: Physica 1969,313, 1. (b) Hull, A. W. The Positions of Atoms in Metals. Trans. Am.Inst. Electri. Eng. 1919, 38, 1445–1466. (c) Vegard, L. DieKonstitution Der Mischkristalle Und Die Raumfüllung Der Atome. Z. Physik1921, 5, 17–26. DOI: 10.1007/BF01349680.(d) Weir, C. E.; Piermarini, G. J. Lattice Parameters and Lattice Energies ofHigh-Pressure Polymorphs of Some Alkali Halides. J. Res. Nat. Bur. Std. APhys. Chem. 1964, 68, 105–111. DOI: 10.6028/jres.068A.009.(e) Piermarini, G. J.; Weir, C. E. A Diamond Cell for X-Ray Diffraction Studiesat High Pressures. J. Res. Nat. Bur. Stand. A Phys. Chem. 1962, 66,325–331. DOI: 10.6028/jres.066A.033. (f) Hong,D. CCDC 2338830: Experimental Crystal Structure Determination. CSD Commun. 2024,DOI: 10.25505/fiz.icsd.cc2jhr4y.
[24]  (a) Ott, H. Xi. Die Strukturen Von MnO,MnS, AgF, NiS, SnI4, SrCl2, BaF2;Präzisionsmessungen Einiger Alkalihalogenide. Z. Kristallogr. Cryst. Mater.1926, 63, 222–230. DOI: 10.1524/zkri.1926.63.1.222.(b) Barrett, W. T.; Wallace, W. E. Studies of NaCl-KCl Solid Solutions. I.Heats of Formation, Lattice Spacings, Densities, Schottky Defects and MutualSolubilities. J. Am. Chem. Soc. 1954, 76, 366–369. DOI: 10.1021/ja01631a014. (c) Will, G.Energiedispersion Und Synchrotronstrahlung: Eine Neue Methode Und Eine NeueStrahlenquelle Fuer Die Roentgenbeugung. Fortschritte der Mineralogie 1981,59, 31–94. (d) Wagner, E. Über Vergleichende Raumgittermessungen anSteinsalz Und Sylvin Mittels Homogener Röntgenstrahlen Und über Deren ExakteWellenlängenbestimmung. Ann. Phys. 1916, 354, 625–647. DOI: 10.1002/andp.19163540602. (e) Livshits, L. D.;Ryabinin, Y.; Larionov, L. V.; Zverev, A. S. The Martensite Character of thePolymorphic Transition in KCl at High Pressures. Soviet Phys. JETP 1969,28, 612–618. (f) Trzesowska, A.; Kruszynski, R. The Structure andQuantum Chemical Study of the Potassium Chloride. J. Mol. Struct.: THEOCHEM2005, 714, 175–178. DOI: 10.1016/j.theochem.2004.11.006.(g) Larin, A. V.; Kislov, A. N.; Nikiforov, A. E.; Popov, S. E. The Ab-InitioCalculation of Crystal Structure and Lattice Dynamics of Perfect and DefectiveMeX (Me+ = Rb+, K+, Na+; X-= F-, Cl-). J. Phys.: Conf. Ser. 2007, 92,012145. DOI 10.1088/1742-6596/92/1/012145. (h) Cherginets,V. L.; Baumer, V. N.; Galkin, S. S.; Glushkova, L. V.; Rebrova, T. P.;Shtitelman, Z. V. Solubility of Al2O3 in Some Chloride−FluorideMelts. Inorg. Chem. 2006, 45, 7367–7371. DOI: 10.1021/ic060181r. (i) Fathima, A. L.;Sivananthan, S.; Somasundari, C. V.; Neelakandapillai, N. X-Ray Diffraction andMicro Hardness Measurement on KClxBr1-x Single Crysta**oped with ZnO Grown from Aqueous Solution. Arch. Phy. Res. 2012,3, 407–410. (j) Walker, D.; Verma, P. K.; Cranswick, L. M. D.; Jones, R.L.; Clark, S. M.; Buhre, S. Halite-Sylvite Thermoelasticity. Am. Mineral.2004, 89, 204–210. DOI: 10.2138/am-2004-0124.(k) Dewaele, A.; Belonoshko, A. B.; Garbarino, G.; Occelli, F.; Bouvier, P.;Hanfland, M.; Mezouar, M. High-Pressure–High-Temperature Equation of State ofKCl and KBr. Phys. Rev. B 2012, 85, 214105. DOI: 10.1103/PhysRevB.85.214105. (l) Shamp, A.;Saitta, P.; Zurek, E. Theoretical Predictions of Novel Potassium ChloridePhases under Pressure. Phys. Chem. Chem. Phys. 2015, 17,12265–12272. DOI: 10.1039/c5cp00470e. (m) Song, J.-T.; Wei, X.-M.; Zhang, J.-M.The Structural, Electronic, and Magnetic Properties of Binary Heusler AlloysZCl3 (Z = Li, Na, K, Rb) with Do3-Type Structure from FirstPrinciple Calculations. J. Supercond. Nov. Magn. 2019, 32,3217–3226. DOI: 10.1007/s10948-019-5084-6. (n) Tygesen,A. S.; Mathiesen, N. R.; Chang, J. H.; García-Lastra, J. M. Density FunctionalTheory Study of Superoxide Ions as Impurities in Alkali Halides. Phys. Chem.Chem. Phys. 2020, 22, 13378–13389. DOI:10.1039/d0cp00719f. (o) Häfner, M.; Bredow, T. F and M Centers in AlkaliHalides: A Theoretical Study Applying Self-Consistent Dielectric-DependentHybrid Density Functional Theory. Phys. Rev. B 2020, 102,184108. DOI: 10.1103/PhysRevB.102.184108. (p)Bocan, G. A.; Breiss, H.; Szilasi, S.; Momeni, A.; Staicu Casagrande, E. M.;Sánchez, E. A.; Gravielle, M. S.; Khemliche, H. Dynamical Effects as a Windowinto Van Der Waals Interactions in Grazing-Incidence Fast He-Atom Diffractionfrom KCl(001). Phys. Rev. B 2021, 104, 235401. DOI: 10.1103/PhysRevB.104.235401. (q) Hong, D. CCDC2338829: Experimental Crystal Structure Determination. CSD Commun. 2024,DOI: 10.25505/fiz.icsd.cc2jhr3x.
[25]  (a)Nyburg, S. C.; Ozin, G. A.; Szymanski, S. T. The crystal and molecularstructure of bismuth trichloride. Corrigendum. Acta Cryst. 1972, B28,2885. DOI: 10.1107/S0567740872007113. (b) Bartl,H. Saving of measuring time by profile evaluation in the recording of neutronsingle-crystal intensities. Crystal structure of BiCl3. Z. Anal.Chem. 1982, 312, 17–18. DOI:10.1007/BF00482726.
[26]  Wright,R. J.; Phillips, A. D.; Hardman, N. J.; Power, P. P. The "Diindene"ArInInAr (Ar = C6H3-2,6-Dipp2, Dipp = C6H3-2,6-Pri2).Dimeric versus Monomeric In(I) Aryls: para-Substituent Effects in TerphenylLigands. J. Am. Chem. Soc. 2002, 124, 8538–8539. DOI: 10.1021/ja026285s.

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册

×
您需要登录后才可以回帖 登录 | 注册

本版积分规则

  • 微信小程序
  • 公众号
  • 微信客服

关于我们|Archiver|APP客户端|小黑屋|物质结构社区 ( 闽ICP备2024081439号-1 )

GMT+8, 2026-2-17 07:54 , Processed in 0.024071 second(s), 6 queries , Redis On.

Powered by Discuz! X5.0

© 2001-2025 Discuz! Team.

在本版发帖
科研需求联系客服
添加微信客服
返回顶部
快速回复 返回顶部 返回列表