|
★声明:本文仅代表个人观点,笔者学识有限,资料整理过程中难免存在疏漏谬误,请不吝指正。 Mercury基操-设置深度暗示 ì问题来源ì 如图1所示,最近在小红书上有小伙伴询问Mercury [1]中如何设置显示深度的操作,即越朝向屏幕背面,结构越模糊。 ▲图1 问题诉求 ì案例来源和数据下载ì 案例来自论文“J. Am.Chem. Soc. 2019, 141, 9680–9686. DOI [2]: 10.1021/jacs.9b03910.”,晶体数据可以在论文期刊主页下载,如图2所示,点击主页的“Supporting Information”按钮,定位到“Supporting Information”后,点击相应CIF [3]文件即可下载,如图3红色箭头所指。 ▲图2 论文期刊主页“Supporting Information”按钮 ▲图3 论文期刊主页“Supporting Information”文件下载链接 虽然论文正文和支持信息中未记录CCDC[4]存储号,不过可以通过论文DOI号从CCDC数据库中下载相应晶体数据,如图4–5所示。(参阅推文“通过DOI号下载CIF文件”或视频“CCDC-Access Structures-根据DOI查找CIF文件:https://www.bilibili.com/video/BV1Lb41197UH”。) ▲图4 根据论文DOI号在CCDC数据库中检索晶体结构 ▲图5 检索结果 ì操作步骤ì 用Mercury打开1922249.cif,隐去溶剂分子、氢原子和叔丁基,并将结构模型模式设置为球棍模型(Ball and Stick),如图6所示。 ▲图6 模型准备 然后勾选界面底部DisplayOptions右侧Options下的Depth cue(深度暗示)复选框,即可呈现所需效果,如图7所示。 ▲图7 Display Options>>Options>>Depth cue Display Options窗口可以从顶部菜单Display下拉菜单中Toolbars展开栏中勾选Display Options调出,如图8所示。 ▲图8 Display>>Toolbars>>Display Options 点击顶部菜单Display下拉菜单中的Display Options可以打开Display Options对话框,然后点击Depth Cueing可以设置正面亮度(Front brightness)和背面亮度(Back Front brightness),如图9所示。 ▲图9 Display>>Display Options>>Depth Cueing 例如把正面亮度调为1.50效果如图10所示。(点击Defaults按钮可以恢复默认设置。) ▲图10 调整亮度效果 视频演示操作请参阅: Mercury基操-设置深度暗示:https://www.bilibili.com/video/BV1jgBzBYECA 论文PDF和CIF文件可从期刊主页下载,或从以下链接下载: 提取码: c9dc 参考文献 [1] (a) Macrae,C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R.,Towler, M. & van de Streek, J. Mercury:Visualization and Analysis of Crystal Structures J. Appl. Cryst. 2006, 39, 453–457. DOI:10.1107/S002188980600731X. (b) Macrae, C. F., Bruno, I. J.; Chisholm, J.A.; Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L.; Taylor, R.;van de Streek, J.; Wood, P. A. Mercury CSD 2.0 – New Features for the Visualizationand Investigation of Crystal Structures. J. Appl. Cryst. 2008, 41,466–470. DOI: 10.1107/S0021889807067908. [2] (a)International Organization for Standardization (2012). ISO 26324:2012. Information and Documentation – DigitalObject Identifier System. http://www.iso.org/iso/catalogue_detail.htm?csnumber=43506. (b) McDonald J. D.;Levine-Clark, M. Encyclopedia of Libraryand Information Sciences. Fourth Edition, CRC Press, 2017. DOI: 10.1081/e-elis4. (c) Liu, J. Digital ObjectIdentifier (DOI) and DOI Services: An Overview. Libri 2021, 71, 349‒360. DOI:10.1515/libri-2020-0018. (d) International Organization forStandardization (2022). ISO 26324:2022. Informationand Documentation – Digital Object Identifier System. https://www.iso.org/standard/81599.html[3] (a)Hall, S. R.; Allen, F. H. Brown, I. D. The Crystallographic Information File(CIF): A New Standard Archive File for Crystallography. Acta Cryst. 1991, A47, 655–685. DOI:10.1107/S010876739101067X. (b) Hall, S. R. The STAR File: A New Formatfor Electronic Data Transfer and Archiving. J.Chem. Inf. Comput. Sci. 1991, 31, 326–333. DOI:10.1021/ci00002a020. (c) Hall, S. R.; Spadaccini, N. The STAR File:Detailed Specifications. J. Chem. Inf.Comput. Sci. 1994, 34, 505–508. DOI:10.1021/ci00019a005. [4] (a)Allen, F. H. The Cambridge Structural Database: A Quarter of a Million CrystalStructures and Rising. Acta Cryst. 2002, B58, 380–388. DOI:10.1107/S0108768102003890. (b) Groom, C. R.; Bruno, I. J.; Lightfoot, M.P.; Ward, S. C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. DOI:10.1107/S2052520616003954. (c) Mitchell, J.; Robertson, J. H.; Raithby,P. R. Cambridge Crystallographic Data Centre (CCDC). Comprehensive Coordination Chemistry III 2021, 413–437. DOI:10.1016/B978-0-12-409547-2.14829-2.
|