晶体数据审稿意见-展示线性吸收系数(CJC) 最近,有小伙伴投到期刊ChineseJournal of Chemistry(CJC)的论文给出如下审稿意见: 审稿意见 | 大意 | The section on crystal structure analysis should adhere to the journal's basic requirements for describing crystal structures. The crystallographic data should be presented in the following order: monoclinic, space group P21/n with cell dimensions of a = 1.2342(2) nm, b = 1.862(2) nm, c = 1.0042(2) nm, β = 105.80(1)°, V = 2.2205 nm3, Z = 2, μ = 15.854 cm−1. Please revise according to the specified order. | 晶体结构分析部分应符合期刊描述晶体结构的基本要求。晶体学数据应按以下顺序呈现:monoclinic, space group P21/n with cell dimensions of a = 1.2342(2) nm, b = 1.862(2) nm, c = 1.0042(2) nm, β = 105.80(1)°, V = 2.2205 nm3, Z = 2, μ = 15.854 cm−1。请按照指定的顺序进行修改。 | In the provided crystallographic data, the symbol μ = 15.854 cm‒1 represents the linear attenuation coefficient of the material. This coefficient quantifies the fraction of incident X-ray photons that are absorbed or scattered per unit thickness of the material, expressed in inverse centimeters (cm‒1). It is a crucial parameter in X-ray crystallography and radiography, as it influences the intensity reduction of X-ray beams as they traverse the material. | 在提供的晶体学数据中,符号μ = 15.854 cm‒1表示材料的线性衰减系数。该系数量化了每单位材料厚度被吸收或散射的入射X射线光子的分数,以厘米倒数(cm‒1)为单位表示。它是X射线晶体学和射线照相术中的一个关键参数,因为它会影响X射线束穿过材料时的强度降低。 | The linear attenuation coefficient is determined by the material's composition and density, as well as the energy of the incident X-rays. For crystalline materials, this information can be obtained from experimental measurements or calculated using tabulated values for the constituent elements. Resources such as the National Institute of Standards and Technology (NIST) provide databases of X-ray mass attenuation coefficients for various elements and compounds, which can be used to compute the linear attenuation coefficient for a specific material. | 线性衰减系数由材料的成分和密度以及入射X射线的能量决定。对于晶体材料,这些信息可以通过实验测量获得,或者使用组成元素的列表值进行计算。美国国家标准与技术研究院(NIST)等机构提供了各种元素和化合物的X射线质量衰减系数数据库,可用于计算特定材料的线性衰减系数。 | Understanding the linear attenuation coefficient is essential for interpreting X-ray diffraction data accurately, as it affects the penetration depth of X-rays into the sample and the resulting diffraction intensities. | 理解线性衰减系数对于准确解读X射线衍射数据至关重要,因为它会影响X射线穿透样品的深度以及由此产生的衍射强度。 |
CJC对于晶体数据的基本要求(信源:https://onlinelibrary.wiley.com/page/journal/16147065/homepage/2434_author.html)如下: 基本要求 | 大意 | Authors must check the correctness of the X-ray data and the reported structure by using the CheckCIF utility prior to submission. Submitting a copy of the output as Supporting Information for Review is mandatory. Authors with appropriate software may alternatively use IUCRVAL or the CHECK validation tool in PLATON. Prior to manuscript submission, the author(s) must deposit their data or update data already available, so that referees can retrieve the information electronically directly from the database. Crystallographic data should be deposited with either the Cambridge Crystallographic Data Centre (CCDC) for organic and organometallic compounds or with Fachinfor-mationszentrum Karlsruhe (FIZ) for inorganic compounds, elements, metals, and minerals. If a crystal structure analysis is an essential part of the paper, crystallographic data should be given in an order as follows: monoclinic, space group P21/n with cell dimensions of a = 1.2342(2) nm, b = 1.862(2) nm, c = 1.0042(2) nm, β = 105.80(1)°, V = 2.2205 nm3, Z = 2, μ = 15.854 cm−1. | 在投稿之前,作者必须使用CheckCIF公用程序(https://checkcif.iucr.org/)检查X射线数据和报告结构的正确性。必须提交一份输出副本(checkcif.pdf)作为支持信息以供审查。拥有适当软件的作者也可以使用IUCRVAL或PLATON[1]中的CHECK验证工具。在提交手稿之前,作者必须存储他们的数据或更新已有数据,以便审稿人可以直接从数据库中以电子方式检索信息。晶体数据应存储在剑桥晶体数据中心(CCDC)[2],用于存储有机和有机金属化合物,或存储在卡尔斯鲁厄大学(FIZ),用于存储无机化合物、元素、金属和矿物。如果晶体结构分析是论文的重要组成部分,则应按以下顺序给出晶体学数据:a = 1.2342(2) nm, b = 1.862(2) nm, c = 1.0042(2) nm, β = 105.80(1)°, V = 2.2205 nm3, Z = 2, μ = 15.854 cm−1。 |
晶体数据的线性吸收/衰减系数记录在CIF[3]文件中的“_exptl_absorpt_coefficient_mu”条目(参阅推文“CIF核心词典-EXPTL”),例如Olex2[4]内置数据sucrose[5]的线性吸收系数为μ =0.142 mm−1,如图1所示。 ▲图1 sucrose的线性吸收系数 视频讲解请参阅: 晶体数据审稿意见-展示线性吸收系数(CJC):https://www.bilibili.com/video/BV1Ksr3YDEVT 参考文献 [1] (a) Spek, A. L. Single-CrystalStructure Validation with the Program PLATON.J. Appl. Cryst. 2003, 36, 7–13. DOI: 10.1107/S0021889802022112.(b) Spek, A. L. StructureValidation in Chemical Crystallography. ActaCryst. 2009, D65, 148–155. DOI:10.1107/S090744490804362X. (c) Spek, A. L. What Makes a Crystal Structure Report Valid? Inorg. Chim. Acta 2018, 470, 232–237. DOI:10.1016/j.ica.2017.04.036. (d) Spek, A. L. checkCIFValidation ALERTS: What They Mean and How to Respond. Acta Cryst. 2020, E76, 1–11. DOI: 10.1107/S2056989019016244. [2] (a) Allen, F. H.The Cambridge Structural Database: A Quarter of a Million Crystal Structuresand Rising. Acta Cryst. 2002, B58, 380–388. DOI:10.1107/S0108768102003890. (b) Groom, C. R.; Bruno, I. J.; Lightfoot, M.P.; Ward, S. C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. DOI:10.1107/S2052520616003954. (c) Mitchell, J.; Robertson, J. H.; Raithby,P. R. Cambridge Crystallographic Data Centre (CCDC). Comprehensive Coordination Chemistry III 2021, 413–437. DOI: 10.1016/B978-0-12-409547-2.14829-2. [3] (a) Hall, S. R.;Allen, F. H. Brown, I. D. The Crystallographic Information File (CIF): A NewStandard Archive File for Crystallography. ActaCryst. 1991, A47, 655–685. DOI:10.1107/S010876739101067X. (b) Hall, S. R. The STAR File: A New Formatfor Electronic Data Transfer and Archiving. J.Chem. Inf. Comput. Sci. 1991, 31, 326–333. DOI:10.1021/ci00002a020. (c) Hall, S. R.; Spadaccini, N. The STAR File:Detailed Specifications. J. Chem. Inf.Comput. Sci. 1994, 34, 505–508. DOI:10.1021/ci00019a005. [4] Dolomanov, O. V.;Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution,Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726. [5] (a) Jaradat, D. M.M.; Mebs, S.; Chęcińska, L.; Luger, P. Experimental Charge Density of Sucroseat 20 K: Bond Topological, Atomic, and Intermolecular Quantitative Properties. Carbohyd. Res. 2007, 342, 1480–1489. DOI: 10.1016/j.carres.2007.04.004. (b) Lee, T.;Chang, G. D. Sucrose Conformational Polymorphism: A Jigsaw Puzzle with MultipleRoutes to a Unique Solution. Cryst.Growth Des. 2009, 9, 3551–3561. DOI:10.1021/cg900294d. (c) Kimura, F.; Kimura, T.; Oshima, W.; Maeyama, M.;Aburaya, K. X-ray Diffraction Study of a Pseudo Single Crystal Prepared from aCrystal Belonging to Point Group 2. J.Appl. Cryst. 2010, 43, 151–153. DOI:10.1107/S0021889809048006. (d) Reliable Structural Data from RietveldRefinements via RestraintConsistency. J. Appl. Cryst. 2015, 48, 1777–1784. DOI:10.1107/S1600576715018233. (e) Woińska, M.; Grabowsky, S.; Dominiak, P.M.; Woźniak, K.; Jayatilaka, D. Hydrogen Atoms Can Be Located Accurately andPrecisely by X-ray Crystallography. Sci.Adv. 2016, 2, e1600192. DOI: 10.1126/sciadv.1600192.(f) Lu, Y.; Gray, D. L.; Yin, L.; Thomas, L. C.; Schmidt, S. J. Unraveling theWide Variation in the Thermal Behavior of Crystalline Sucrose Using an EnhancedLaboratory Recrystallization Method. Cryst.Growth Des. 2018, 18, 1070−1081. DOI:10.1021/acs.cgd.7b01526. (g) Chick, C. N.; Misawa-Suzuki, T.; Suzuki,Y.; Usuki, T. Preparation and Antioxidant Study of Silver Nanoparticles ofMicrosorum Pteropus Methanol Extract. Bioorg.Med. Chem. Lett. 2020, 30, 127256. DOI:10.1016/j.bmcl.2020.127526. 声明:本文仅代表个人观点,笔者学识有限,资料整理过程中可能存在疏漏错误,请不吝指正。 如需PDF文档,请从以下链接下载: 通过网盘分享的文件:晶体数据审稿意见-展示线性吸收系数(CJC).pdf
|